
 

PEB Walk: Avoid API calls inspection in IAT by analyst and bypass static 
detection of AV/EDR 

Usman Sikander 
Offensive Security Researcher 
https://www.linkedin.com/in/usman-sikander13 

2024 

https://www.linkedin.com/in/usman-sikander13


1 
 

 

 

Summary 

In this blog, we discuss the different approaches of AV/EDRs static analysis and detection. 
Legacy antivirus software was dependent on signature-based detection. They calculate the 
hash of binary and see if this specific signature matches with known malware signature in 
the database than mark the binary malicious or benign accordingly. To bypass hash-based 
detection procedure is very simple. You just need to change even a single byte to bypass 
hash-based detection. But now AVs are quite advance they don’t only rely on known malware 
hashes, also nowadays EDRs comes into play which looks for patterns, IAT imports, EDR 
solutions use pattern matching to identify suspicious code sequences, strings, or structures 
within files that are commonly associated with malware. EDR tools utilize YARA rules to 
detect malware based on specific patterns and characteristics defined in the rules. These 
rules can identify both known and unknown threats by looking for indicators of compromise 
(IOCs). EDR solutions analyze file attributes and behaviors for characteristics typical of 
malware. This includes examining file entropy, uncommon API calls, suspicious import 
tables, and other anomalous features. We use different techniques to bypass static analysis 
of EDRs solutions. We divide our arsenal preparation into 4 main stages, we try to hide 
strings, API imports by obfuscating them, resolve API using different ways such as 
dynamically walking the process environment block (PEB) and resolve export functions by 
parsing kernel32.dll in-memory to hide imports. In the end, we look at the results of the 
detection rate after applying different techniques and see which technique is more effective 
to fly under the radar of EDRs static detection. 

PEB Structure 

The Process Environment Block (PEB) is a crucial data structure in Windows operating 
systems that contains information about the state of a process. It’s an undocumented 
structure in the Windows API but is well-known among malware analysts and developers for 
its rich set of information about a process. 

typedef struct _PEB { 
 BYTE Reserved1[2]; 
 BYTE BeingDebugged; 
 BYTE Reserved2[1]; 
 PVOID Reserved3[2]; 
PPEB_LDR_DATA Ldr; 
 PRTL_USER_PROCESS_PARAMETERS ProcessParameters; 



2 
 

 PVOID Reserved4[3]; 
 PVOID AtlThunkSListPtr; 
 PVOID Reserved5; 
 ULONG Reserved6; 
 PVOID Reserved7; 
 ULONG Reserved8; 
 ULONG AtlThunkSListPtr32; 
 PVOID Reserved9[45]; 
 BYTE Reserved10[96]; 
 PPS_POST_PROCESS_INIT_ROUTINE PostProcessInitRoutine; 
 BYTE Reserved11[128]; 
 PVOID Reserved12[1]; 
 ULONG SessionId; 
} PEB, *PPEB; 

From the structure members mentioned above, we can see the highlighted Ldr member. This 
member contains a pointer to a PEB_LDR_DATA structure, which holds information about all 
the loaded modules (EXEs/DLLs) in the current process. Within this structure, the 
InMemoryOrderModuleList is a doubly linked list used to find the addresses of loaded DLLs. 

typedef struct _PEB_LDR_DATA { 
 BYTE Reserved1[8]; 
 PVOID Reserved2[3]; 
 LIST_ENTRY InMemoryOrderModuleList; 
} PEB_LDR_DATA, *PPEB_LDR_DATA; 

In this structure, a process would use the InMemoryOrderModuleList to enumerate loaded 
modules. This linked list contains entries for each module, represented by 
LDR_DATA_TABLE_ENTRY structures, which provide detailed information about each 
module. 

PEB Walk Overview 

PEB walk is the process of accessing the PEB structure form process space and enumerating 
all loaded modules in space of process dynamically. After enumerating the loaded modules, 
resolve the functions and variables of the modules and use them into code. 

X86 Assembly: 

mov eax, fs:[30h] ; EAX now points to the PEB 

X64 Assembly: 



3 
 

mov rax, gs:[60h] ; RAX now points to the PEB 

To outline the process, the PEB walk for resolving the addresses of LoadLibraryA and 
GetProcAddress is as follows: 

1. Obtain and access the PEB structure of the current process. 

2. Navigate to the PEB_LDR_DATA structure using the Ldr member of the PEB. 

3. Iterate through the InLoadOrderModuleList to locate the LDR_DATA_TABLE_ENTRY 
for kernel32.dll. 

4. Once the entry for kernel32.dll is found, extract its base address. 

5. Manually parse the export table of kernel32.dll to resolve the addresses of 
LoadLibraryA and GetProcAddress. 

Arsenal preparation and Stages 

We use a simple process injection technique, which is using Windows APIs such as 
VirtualAllocEx, WriteProcessMemory, and CreateRemoteThread to inject a msfvenom 
generated shellcode into a process. 

VirtualAllocEx: To allocate RWX memory region into remote process. 

WriteProcessMemory: To write shellcode into created memory section. 

CreateRemoteThread: To create a new thread that executes our shellcode when it starts. 

Stage 1 (Simple Injection) 

In stage 1, we write a simple process injection technique, which uses the above-mentioned 
APIs to inject a malicious shellcode into a remote process. However, in the first stage, we 
directly use these APIs in our arsenal instead of dynamically resolving the APIs. 



4 
 

Simple Injection 

In the above code, we use OpenProcess API to get the handle of process, and we allocate 
RWX memory region, write shellcode which is opening calc.exe and creating new thread to 
execute our shellcode into remote process. This is a very simple and straightforward code. 

IAT Inspection 

In each stage, we do IAT inspection by using three PE editor tools PE Bear, CFF Explorer, and 
PE studio. Let’s inspect our compiled binary with these tools and see what indicators on 
which our malware can be detected are and try to overcome them in the coming stages. 



5 
 

CFF Explorer Results 

You can clearly see the API calls in the IAT table of compiled binary, and by looking into these 
calls, malware analysts can clearly indicate that this binary is doing shellcode injection. 
These are the very well-known sequences of API calls to perform injection. On the other side, 
EDRs can detect the binary in static analysis because they do inspection on IAT. 



6 
 

PE Studio Results

PE Studio 

You see, PE studio flagged these APIs as malicious. It is the beauty of PE studio that it 
mapped flag API calls on the MITRE ATT&CK framework. So, according to PE Studio, this 
malware is performing process injection, which is very right in this case. So, we must 
overcome these challenges in our next stages of arsenal preparation. 

Execution 

In each stage, we execute binary to verify the working of the malware. Every time malware 
injects malicious shellcode into remote processes and executes calc.exe. In this stage, we 
use Windows API calls directly into code. 



7 
 

Stage 1 Execution 

Stage 2 (DynamicAPI Injection) 

In stage 2, we use the same injection technique to inject malicious shellcode into the 
process, but this time, we resolve windows APIs dynamically by using two main functions 
GetProcAddress and LoadLibraryA. 

GetProcessAddress: This function resolves the address of any function inside the given 
module. This API took two arguments, one the module from which we want to get the function 
address and second the function name to be resolved. 

LoadLibraryA: This function gets the handle of the module from which we want to get the 
function address. In our case, kernell32.dll is the module. 

Prototypes 

In this stage, first, we must define the prototypes of each API that we want to resolve 
dynamically. We define a type representing a function pointer. 



8 
 

DynamicAPI Injection 

The above code explains that we use the LoadLibrayA function to get the handle of 
kernel32.dll, and then we use GetProcAddress to resolve our APIs inside the kernel32.dll 
Now, this time, we use dynamic API resolution technique and see what makes better in our 
compiled binary. 

IAT Inspection 

In each stage, we do IAT inspection by using three PE editor tools PE Bear, CFF Explorer, and 
PE studio. Let’s inspect our compiled binary with these tools and see what indicators on 
which our malware can be detected are and try to overcome them in the coming stages. 



9 
 

CFF Explore Results 

You can clearly see; at this stage we are quite better because this time we have fewer imports 
which indicate the behaviour of malware. But still, we see some indicators such as 
LoadLibrarayA and GetProcAddress, which can be detected in static analysis. We try to 
overcome this issue in our next stage preparation. 



10 
 

PE Studio 

PE studio still flagged some APIs and mapped them on MITRE ATT&CK under the category 
of process injection. 

PE Bear Results 

Oops, we see there are some strings in this stage under .rdata section of PE file. These 
strings are a great indicator of the behaviour of binary. Malware can still be detected in static 
analysis by EDRs. We must overcome this issue in our coming stages. 

Execution 

In each stage, we execute binary to verify the working of the malware. Every time malware 
injects malicious shellcode into remote processes and executes calc.exe. In this stage, we 
use dynamic resolution of Windows API calls to inject shellcode. 



11 
 

Stage 2 Execution 

Stage 3 (PEB walk Injection) 

In stage 3, we use the same injection technique to inject a malicious shellcode into the 
process, but this time, we use a PEB walk to resolve APIs dynamically. We access the PEB 
and enumerate all loaded modules in process space and find the base address of 
kernel32.dll. We use the base address of kernel32.dll to resolve the APIs' function address 
and perform process injection using PEB walk. 

PEB Structures 

In this stage, first, we must define all the structures needed to perform a PEB walk. You can 
find these structures on Microsoft documentation. 



12 
 

PEB (winternl.h) - Win32 apps 
Contains process information.learn.microsoft.com 

We define all the needed structures, and we define function pointer types for the Windows 
API functions we need. 

Resolve Function Address 

Above code parse kernel32.dll as PE file because DLL is PE file format and first it is getting 
the DOS header and by using DOS header member e_lfanew which is 4 bytes field tells the 
offset of NT header. Now, the NT header contains the option header, which holds the data 
directory field, including all exported functions of the module. So, this function returns the 
address of the matched function name. 

PE Access and Walk 

This code snippet accesses the PEB and then traverse the InLoadOrderModuleList to find 
the LDR_DATA_TABLE_ENTRY for kernel32.dll. 

https://learn.microsoft.com/en-us/windows/win32/api/winternl/ns-winternl-peb
https://learn.microsoft.com/en-us/windows/win32/api/winternl/ns-winternl-peb


13 
 

Resolve API functions 

Finally, we resolve and use the APIs to perform process injection. 

IAT Inspection 

In each stage, we do IAT inspection by using three PE editor tools PE Bear, CFF Explorer, and 
PE studio. Let’s inspect our compiled binary with these tools and see what indicators on 
which our malware can be detected are and try to overcome them in the coming stages. 

CFF Explorer Results 

Great, in this stage, we improve our IAT, and this time, we can see there is no malicious 
import, which can give indicators for malicious behaviour. We see there is no 
GetProcAddress and LoadLibraryA functions this time. This is a good sign for a malware 
developer because this can bypass static analysis of EDRs solutions. 



14 
 

Malicious String 

Oops, we see there are still some strings in this stage under .rdata section of PE file. These 
strings are a great indicator of the behaviour of binary. Malware can still be detected in static 
analysis by EDRs. We overcame one issue, which was IAT imports indication, but this issue 
could be addressed in our coming stage. 

Execution 

In each stage, we execute binary to verify the working of the malware. Every time malware 
injects malicious shellcode into remote processes and executes calc.exe. In this stage, we 
use the dynamic resolution of Windows APIs by PEB walk to inject shellcode. 



15 
 

Stage 3 Execution 

Stage 4 (PEB Walk and API Imports Obfuscation, Strings Hide) 

In stage 4, we use the same technique to inject a malicious shellcode into the process. But 
this is the final stage, so we have to overcome all the challenges we faced in the previous 
stage. We need to hide malicious strings and dynamically resolve APIs. 

PEB Structures 



16 
 

In this stage, first, we must define all the structures needed to perform a PEB walk, same as 
stage 3. You can find these structures on Microsoft documentation. 

PEB (winternl.h) — Win32 apps 
Contains process information.learn.microsoft.com 

We define all the needed structures, and we define function pointer types for the Windows 
API functions we need. 

XORing 

In this stage, we use xor encryption to obfuscate the API calls and hide the strings to bypass 
static analysis. This function will use the key “offensivepanda” and decrypt all API calls at 
runtime, which are encrypted and stored inside the code. 

Decrypt and Inject 

You can see in this code snippet that we decrypt the APIs' calls and pass it to function, which 
is resolving the address of API calls dynamically, All the API calls are encrypted. 

IAT Inspection 

In each stage, we do IAT inspection by using three PE editor tools PE Bear, CFF Explorer, and 
PE studio. Let’s inspect our final stage compiled binary with these tools and see if we have 
overcome all the issues or not. 

https://learn.microsoft.com/en-us/windows/win32/api/winternl/ns-winternl-peb
https://learn.microsoft.com/en-us/windows/win32/api/winternl/ns-winternl-peb


17 
 

CFF Explore Results 

Great, in this stage, we improve our IAT, and this time, we can see there is no malicious 
import, which can give indicators for malicious behaviour. We see there is no 
GetProcAddress and LoadLibraryA functions this time. 

Strings Stage Final 

Great, there is no malicious string this time because we obfuscate all API calls in our code, 
and we don’t have any string and API import, which indicates the behaviour of malware in 
static analysis. 

Execution 

In each stage, we execute binary to verify the working of the malware. Every time malware 
injects malicious shellcode into remote processes and executes calc.exe. In this stage, we 



18 
 

use dynamic resolution of Windows APIs by PEB walk and obfuscate API call to inject 
shellcode. 

Stage 4 Execution 

Detection Results 

We removed the msfvenom shellcode from the code and uploaded the first and last stage 
malware on virustotal to see the detection results. We remove shellcode because the 
msfvenom generated shellcode is highly detectable, so we want to see the effectiveness of 
other techniques we used in this post. We know virustotal check the behaviour as well, but 
let’s see the results. 



19 
 

Stage 1 Results (Simple Injection)

Final Stage Result (PEB walk and Xor) 

Note 

These techniques help to bypass static analysis of EDRs solution and help to make malware 
harder in static analysis so analysts can’t simply understand the behaviour of malware by 



20 
 

looking into IAT and strings. But binary can still be detected in dynamic and behaviour-based 
analysis. Because dynamic bypass was not the scope of this post, but you can see our 
previous blogs, which mainly focused on dynamic behaviour bypass. 

Full Code 

GitHub - Offensive-Panda/PEB_WALK_AND_API_OBFUSCATION_INJECTION 
 

References: 

https://offensive-panda.github.io/DefenseEvasionTechniques 

https://medium.com/@merasor07/peb-walk-avoid-api-calls-inspection-in-iat-by-
analyst-and-bypass-static-detection-of-1a2ef9bd4c94 

 

 

 

 

https://github.com/Offensive-Panda/PEB_WALK_AND_API_OBFUSCATION_INJECTION
https://github.com/Offensive-Panda/PEB_WALK_AND_API_OBFUSCATION_INJECTION
https://offensive-panda.github.io/DefenseEvasionTechniques
https://medium.com/@merasor07/peb-walk-avoid-api-calls-inspection-in-iat-by-analyst-and-bypass-static-detection-of-1a2ef9bd4c94
https://medium.com/@merasor07/peb-walk-avoid-api-calls-inspection-in-iat-by-analyst-and-bypass-static-detection-of-1a2ef9bd4c94

